Co-adjoint Polynomial

نویسنده

  • PÉTER CSIKVÁRI
چکیده

In this note we study a certain graph polynomial arising from a special recursion. This recursion is a member of a family of four recursions where the other three recursions belong to the chromatic polynomial, the modified matching polynomial, and the adjoint polynomial, respectively. The four polynomials share many common properties, for instance all of them are of exponential type, i. e., they satisfy the identity ∑ S⊆V (G) f(G[S], x)f(G[V \ S], y) = f(G, x+ y) for every graph G. It turns out that the new graph polynomial is a specialization of the Tutte polynomial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic adjoint of the polynomials-polynomial matrix multiplication

This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field

متن کامل

Quantum Co-adjoint Orbits of the Group of Affine Transformations of the Complex Straight Line Do Ngoc Diep and Nguyen Viet Hai

We construct start-products on the co-adjoint orbit of the Lie group Aff(C) of affine transformations of the complex straight line and apply them to obtain the irreducible unitary representations of this group. These results show effectiveness of the Fedosov quantization even for groups which are neither nilpotent nor exponential. Together with the result for the group Aff(R) [see DH], we have ...

متن کامل

Quantum Co-Adjoint Orbits of the Group of Affine Transformations of the Complex Line

We construct star-products on the co-adjoint orbit of the Lie group Aff(C) of affine transformations of the complex line and apply them to obtain the irreducible unitary representations of this group. These results show the effectiveness of the Fedosov quantization even for groups which are neither nilpotent nor exponential. Together with the result for the group Aff(R) (see [5]), we thus have ...

متن کامل

Annihilators of Generalized Verma Modules of the Scalar Type for Classical Lie Algebras

We construct a generator system of the annihilator of a generalized Verma module of a classical reductive Lie algebra induced from a character of a parabolic subalgebra as an analogue of the minimal polynomial of a matrix. In a classical limit it gives a generator system of the defining ideal of any semisimple co-adjoint orbit of the Lie algebra. We also give some applications to integral geome...

متن کامل

Two remarks on the adjoint polynomial

One can define the adjoint polynomial of the graph G as follows. Let ak(G) denote the number of ways one can cover all vertices of the graph G by exactly k disjoint cliques of G. Then the adjoint polynomial of G is

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016